Observations of the Geminids 2016 with the BRAMS radio interferometer

H. Lamy ${ }^{1}$, C. Tétard 1, M. Anciaux ${ }^{1}$, S. Ranvier ${ }^{1}$, Antonio Martinez Picar², S. Calders ${ }^{1}$, C. Verbeeck ${ }^{2}$
${ }^{1}$ Royal Belgian Institute for Space Aeronomy
${ }^{2}$ Royal Observatory of Belgium

BRAMS

Typical BRAMS receiving station

The interferometer in Humain

Credit : A. Martinez-Picar

Principle

Jones et al (1998)

$$
\begin{array}{ll}
\phi_{10}=-\frac{2 \pi d_{1}}{\lambda} \sin \xi & \sin \xi=-\frac{\lambda}{2 \pi} \frac{\left(\phi_{10}-\phi_{20}\right)}{\left(d_{1}+d_{2}\right)} \\
\phi_{20}=+\frac{2 \pi d_{2}}{\lambda} \sin \xi & \sin \xi=-\frac{\lambda}{2 \pi} \frac{\left(\phi_{10}+\phi_{20}\right)}{\left(d_{1}-d_{2}\right)}
\end{array}
$$

$$
\begin{aligned}
& d_{1}=2.5 \lambda \\
& d_{2}=2 \lambda
\end{aligned}
$$

Principle (2)

Jones et al (1998)

Angles of arrival

$$
\begin{gathered}
\beta=\tan ^{-1}\left(\frac{\cos \xi_{2}}{\cos \xi_{1}}\right) \\
\alpha=\cos ^{-1}\left(\frac{\cos \xi_{2}}{\cos \beta}\right)=\cos ^{-1}\left(\frac{\cos \xi_{1}}{\cos \beta}\right) \\
\alpha: \text { elevation } \quad \beta: \text { azimuth (measured from North toward East) }
\end{gathered}
$$

Design of the interferometer

First example

RAD_BEDOUR_20161205_0035_BEHUMA_SYS006: 16384-14488

Time (sec)

Phase differences between antenna pairs

Each color = 1 frequency

$$
\begin{aligned}
& \sin \xi=-\frac{\lambda}{2 \pi} \frac{\left.\phi_{10}-\phi_{20}\right)}{\left(d_{1}+d_{2}\right)} \\
& \sin \xi=-\frac{\lambda}{2 \pi} \frac{\left(\phi_{10}+\phi_{20}\right)}{\left(d_{1}-d_{2}\right)}
\end{aligned}
$$

Sum \& Diff of phase differences

$\sin \xi=-\frac{\lambda}{2 \pi} \frac{\left(\phi_{10}-\phi_{20}\right)}{\left(d_{1}\right)}$
$\sin \xi=-\frac{\lambda}{2 \pi} \frac{\left(\phi_{10}+\phi_{20}\right)}{\left(d_{1}-d_{2}\right)}$

Angles of arrival

Same example, different frequencies

A less intense meteor echo

RAD_BEDOUR_20161205_0035_BEHUMA_SYS006: 16384-14488

Epsilon echo

RAD_BEDOUR_20161214_0525_BEHUMA_SYS006: 16384-14488

Time (sec)

RAD_BEDOUR_20161214_0525_BEHUMA_SYS006: 16384-14488

RAD_BEDOUR_20161214_0525_BEHUMA_SYS006: 16384-14488

A long overdense meteor echo

RAD_BEDOUR_20161214_0810_BEHUMA_SYS006: 16384-14488

RAD_BEDOUR_20161214_0810_BEHUMA_SYS006: 16384-14488

Conclusions

- Phases become coherent as soon as a meteor echo occurs. The higher the S / N ratio, the more stable the results for the angles of arrival
- For the fainter meteor echoes, it might be interesting to sum up the contributions of individual frequencies present in the meteor echo to increase the S / N ratio. This sum must be done in the complex plane before calculating the phases. It is not so trivial ...
- The directions of arrival we obtain are not calibrated at all. We find a direction for the meteor echo but have so far no way to check that it is correct. There are a number of systematic errors that need to be taken into account and corrected for, e.g. the difference in length of the cables going from the antenna to the receiver

Calibration

Can be done using one of the following options:
> Using a transmitter on a drone flying in the far-field of the interferometer
> Using the signal coming from a plane whose position can be very accurately known
> Using data from optical cameras such as CAMS

Calibration with a drone

Tx = BRAMS calibrator (see Lamy et al 2015)

Results of the first flight

Humain 1 2016-09-22T10:39 (Res: 4•202Hz 0.476s)

Thank you

